Sir Robert Alexander Watson-Watt, KCB, FRs FRAeS (13 April 1892 – 5 December 1973) was a British pioneer of radio direction finding and radar technology.

Watt began his career in radio physics with a job at the Met Office, where he began looking for accurate ways to track thunderstorms using the radio signals given off by lightning. This led to the 1920s development of a system later known as huff-duff. Although well-publicized at the time, the system’s enormous military potential was not developed until the late 1930s. Huff-duff allowed operators to determine the location of an enemy radio in seconds and it became a major part of the network of systems that helped defeat the U-boat threat. It is estimated that huff-duff was used in about a quarter of all attacks on U-boats.

In 1935 Watt was asked to comment on reports of a German death ray based on radio. Watt and his assistant Arnold Frederic Wilkins quickly determined it was not possible, but Wilkins suggested using radio signals to locate aircraft at long distances. This led to a February 1935 demonstration where signals from a BBC short-wave transmitter were bounced off a Handley Page Heyford aircraft. Watt led the development of a practical version of this device, which entered service in 1938 under the code name Chain Home. This system provided the vital advance information that helped the Royal Air Force win the Battle of Britain, in WW2.

After the success of his invention, Watson-Watt was sent to the US in 1941 to advise on air defence after Japan’s attack on Pearl Harbor. He returned and continued to lead radar development for the War Office and Ministry of Supply. He was elected a Fellow of the Royal Society in 1941, was given a knighthood in 1942 and was awarded the US Medal for Merit in 1946.

Early years

Born in Brechin, Angus, Scotland, on 13 April 1892 Watson-Watt (the hyphenated name is used herein for consistency, although he did not adopt it until 1942)  was a descendant of James Watt, the famous engineer and inventor of the practical steam engine. After attending Damacre Primary School and Brechin High School, he was accepted to University College, Dundee (then part of the University of St Andrews but became the University of Dundee in 1967). Watson-Watt had a successful time as a student, winning the Carnelley Prize for Chemistry and a class medal for Ordinary Natural Philosophy in 1910.

He graduated with a BSc in engineering in 1912, and was offered an assistantship by Professor William Peddie,  the holder of the Chair of Physics at University College, Dundee from 1907 to 1942. It was Peddie who encouraged Watson-Watt to study radio, or “wireless telegraphy” as it was then known, and who took him through what was effectively a postgraduate class of one on the physics of radio frequency oscillators and wave propagation. At the start of the Great War Watson-Watt was working as an assistant in the College’s Engineering Department.

Early experiments

In 1916 Watson-Watt wanted a job with the War Office, but nothing obvious was available in communications. Instead he joined the Meteorological Office, which was interested in his ideas on the use of radio for the detection of thunderstorms. Lightning gives off a radio signal as it ionizes the air, and his goal was to detect this signal to warn pilots of approaching thunderstorms. The signal occurs across a wide range of frequencies and could be easily detected and amplified by naval longwave sets. In fact, lightning was a major problem for communications at these common wavelengths.

His early experiments were successful in detecting the signal and he quickly proved to be able to do so at ranges up to 2,500 km. Location was determined by rotating a loop antenna to maximise (or minimise) the signal, thus “pointing” to the storm. The strikes were so fleeting that it was very difficult to turn the antenna in time to positively locate one. Instead, the operator would listen to many strikes and develop a rough average location.

At first, he worked at the Wireless Station of Air Ministry Meteorological Office in Aldershot, Hampshire. In 1924 when the War Department gave notice that they wished to reclaim their Aldershot site, he moved to Ditton Park near Slough, Berkshire. The National Physical Laboratory (NPL) was already using this site and had two main devices that would prove pivotal to his work.

The first was an Adcock antenna, an arrangement of four masts that allowed the direction of a signal to be detected through phase differences. Using pairs of these antennas positioned at right angles, one could make a simultaneous measurement of the lightning’s direction on two axes. Displaying the fleeting signals was a problem. This was solved by the second device, the WE-224 oscilloscope, recently acquired from Bell Labs. By feeding the signals from the two antennas into the X and Y channels of the oscilloscope, a single strike caused the appearance of a line on the display, indicating the direction of the strike. The scope’s relatively “slow” phosphor allowed the signal to be read long after the strike had occurred. Watt’s new system was being used in 1926 and was the topic of an extensive paper by Watt and Herd.

The Met and NPL radio teams were amalgamated in 1927 to form the Radio Research Station with Watt as director. Continuing research throughout, the teams had become interested in the causes of “static” radio signals and found that much could be explained by distant signals located over the horizon being reflected off the upper atmosphere. This was the first direct indication of the reality of the Heaviside layer, proposed earlier but at this time largely dismissed by engineers. To determine the altitude of the layer, Watt, Appleton and others developed the ‘squegger’ to develop a ‘time base’ display, which would cause the oscilloscope’s dot to move smoothly across the display at very high speed. By timing the squegger so that the dot arrived at the far end of the display at the same time as expected signals reflected off the Heaviside layer, the altitude of the layer could be determined. This time base circuit was key to the development of radar.

After a further reorganization in 1933, Watt became Superintendent of the Radio Department of NPL in Teddington.


The air defence problem

During the First World War, the Germans had used Zeppelins as long-range bombers over London and other cities and defences had struggled to counter the threat. Since that time aircraft capabilities had improved considerably and the prospect of widespread aerial bombardment of civilian areas was causing the government anxiety. Heavy bombers were now able to approach at altitudes that anti-aircraft guns of the day were unable to reach. With enemy airfields across the English Channel potentially only 20 minutes’ flying time away, bombers would have dropped their bombs and be returning to base before any intercepting fighters could get to altitude. The only answer seemed to be to have standing patrols of fighters in the air at all times but, with the limited cruising time of a fighter, this would require a huge air force. An alternative solution was urgently needed and in 1934, the Air Ministry set up a committee, the CSSAD (Committee for the Scientific Survey of Air Defence), chaired by Sir Henry Tizard to find ways to improve air defence in the UK.

Rumours that Nazi Germany had developed a “death ray” that was capable of destroying towns, cities and people using radio waves were given attention in January 1935 by Harry Wimperis, Director of Scientific Research at the Air Ministry. He asked Watson-Watt about the possibility of building their version of a death-ray, specifically to be used against aircraft. Watson-Watt quickly returned a calculation carried out by his young colleague, Arnold Wilkins, showing that the device was impossible to construct, and fears of a Nazi version soon vanished. He also mentioned in the same report a suggestion that was originally made to him by Wilkins, who had recently heard of aircraft disturbing shortwave communications, that radio waves might be capable of detecting aircraft: “Meanwhile attention is being turned to the still difficult, but less unpromising, problem of radio detection and numerical considerations on the method of detection by reflected radio waves will be submitted when required.” Wilkins’s idea, checked by Watt, was promptly presented by Tizard to the CSSAD on 28 January.

Aircraft detection and location

Memorial at the Daventry site of the first successful RADAR experiments. 52.195982°N 1.050121°W

Closeup of a memorial plaque

The first workable radar unit constructed by Robert Watson Watt and his team

On 12 February 1935, Watson-Watt sent the secret memo of the proposed system to the Air Ministry, Detection and location of aircraft by radio methods. Although not as exciting as a death-ray, the concept clearly had potential but the Air Ministry, before giving funding, asked for a demonstration proving that radio waves could be reflected by an aircraft. This was ready by 26 February and consisted of two receiving antennas located about 6 miles (9.7 km) away from one of the BBC’s shortwave broadcast stations at Daventry. The two antennas were phased such that signals travelling directly from the station cancelled themselves out, but signals arriving from other angles were admitted, thereby deflecting the trace on a CRT indicator (passive radar). Such was the secrecy of this test that only three people witnessed it: Watson-Watt, his colleague Arnold Wilkins, and a single member of the committee, A. P. Rowe. The demonstration was a success; on several occasions, a clear signal was seen from a Handley Page Heyford bomber being flown around the site. The Prime Minister, Stanley Baldwin, was kept quietly informed of radar’s progress. On 2 April 1935, Watson-Watt received a patent on a radio device for detecting and locating an aircraft.

In mid-May 1935, Wilkins left the Radio Research Station with a small party, including Edward George Bowen, to start further research at Orford Ness, an isolated peninsula on the Suffolk coast of the North Sea. By June they were detecting aircraft at a distance of 16 miles (26 km), which was enough for scientists and engineers to stop all work on competing for sound-based detection systems. By the end of the year, the range was up to 60 miles (97 km), at which point plans were made in December to set up five stations covering the approaches to London.

One of these stations was to be located on the coast near Orford Ness, and Bawdsey Manor was selected to become the main centre for all radar research. In an effort to put a radar defence in place as quickly as possible, Watson-Watt and his team created devices using existing available components, rather than creating new components for the project, and the team did not take additional time to refine and improve the devices. So long as the prototype radars were in workable condition they were put into production. They soon conducted “full scale” tests of a fixed radar radio tower system that would soon be known as Chain Home, an early detection system that attempted to detect an incoming bomber by radio signals. The tests were a complete failure, with the fighter only seeing the bomber after it had passed its target. The problem was not the radar, but the flow of information from trackers from the Observer Corps to the fighters, which took many steps and was very slow. Henry Tizard with Patrick Blackett and Hugh Dowding immediately set to work on this problem, designing a ‘command and control air defence reporting system’ with several layers of reporting that were eventually sent to a single large room for mapping. Observers watching the maps would then tell the fighter groups what to do via direct communications.

Radar coverage along the UK coast, 1939–1940

By 1937 the first three stations were ready, and the associated system was put to the test. The results were encouraging, and an immediate order by the government to commission an additional 17 stations was given, resulting in a chain of fixed radar towers along the east and south coast of England. By the start of the Second World War, 19 were ready to play a key part in the Battle of Britain, and by the end of the war over 50 had been built. The Germans were aware of the construction of Chain Home but were not sure of its purpose. They tested their theories with a flight of the Zeppelin LZ 130, but concluded the stations were a new long-range naval communications system.

As early as 1936, it was realized that the Luftwaffe would turn to night bombing if the day campaign did not go well, and Watson-Watt had put another of the staff from the Radio Research Station, Edward Bowen, in charge of developing a radar that could be carried by a fighter. Night time visual detection of a bomber was good to about 300 m, and the existing Chain Home systems simply did not have the accuracy needed to get the fighters that close. Bowen decided that an airborne radar should not exceed 90 kg (200 lb) in weight or 8 ft³ (230 ) in volume, and should require no more than 500 watts of power. To reduce the drag of the antennas the operating wavelength could not be much greater than one metre, difficult for the day’s electronics. Airborne Interception (AI), was perfected by 1940, and was instrumental in eventually ending the Blitz of 1941.

Watson-Watt justified his choice of a non-optimal frequency for his radar, with his often-quoted “cult of the imperfect,” which he stated as “Give them the third-best to go on with; the second-best comes too late, [and] the best never comes.”

Civil Service trade union activities

Between 1934 and 1936, Watson-Watt was president of the Institution of Professional Civil Servants, now a part of Prospect, the “union for professionals”. The union speculates that at this time he was involved in campaigning for an improvement in pay for Air Ministry staff.

Contribution to the Second World War.

Sir Robert Alexander Watson-Watt, ca. 1944

In his English History 1914–1945, historian A. J. P. Taylor paid the highest of praise to Watson-Watt, Sir Henry Tizard and their associates who developed and put in place radar, crediting them with being fundamental to victory in the Second World War.

In July 1938, Watson-Watt left Bawdsey Manor and took up the post of Director of Communications Development (DCD-RAE). In 1939, Sir George Lee took over the job of DCD, and Watson-Watt became Scientific Advisor on Telecommunications (SAT) to the Ministry of Aircraft Production, travelling to the US in 1941 to advise them on the severe inadequacies of their air defence, illustrated by the Pearl Harbor attack. He was knighted by George VI in 1942 and received the US Medal for Merit in 1946.

Sir Robert descends from a plinth in Trafalgar Square, London in 1961 after speaking at a rally protesting at the spread of nuclear weapons

Ten years after his knighthood, Watson-Watt was awarded £50,000 by the UK government for his contributions in the development of radar. He established a practice as a consulting engineer. In the 1950s, he moved to Canada and later he lived in the US, where he published Three Steps to Victory in 1958. Around 1958, he appeared as a mystery challenger on the American television programme To Tell The Truth.

Scottish foods. Porridge.
Porridge (historically also spelled porage, porrige, or parritch) is a food commonly eaten as a breakfast cereal dish, made by …
Technology, good or bad.
What did we do before technology? Things were simple yesterday children played …
Our NHS in the UK.
Hi friends, just wanted to blow a trumpet for ALL the workers …
Nothing in the end!
Viewing the World through a microscope at times, you don't like what …
Scottish Architecture. Scottish National Gallery.
The Scottish National Gallery (formerly the National Gallery of Scotland) is the national art gallery of Scotland. It …
An infamous Theft. The stone of Scone.
VICTORIA M. LORD “I did it for Scotland” Ian Hamilton Criminal defense …
The Day you changed!
I look at your face pale and Gray you were alright before …
Scottish foods and delicacies. The Scotch Pie.
Scotch pie Alternative namesMutton pie, shell pie, mince pie, football pieTypeMeat piePlace …
A Mothers Fear.
An old woman cried all through the night, For she lost four …
Thanks a million.
Dear friends. I would like to take the opportunity to thank each …
Infamous Scots. Arthur Thompson.
Arthur Thompson (gangster) Arthur Thompson (September 1931 – 13 March 1993) known as …
The answer is blowing in the wind!
As I watch the face masks blowing In already littered streets In …
Scottish Architecture. The Lighthouse.
Charles Rennie Mackintosh was a young draughtsman in the architectural practise of …
Scottish Music. Will ye no come back again?
Hi friends, another taste of Scottish Music, hope you enjoy. Scottish …
Day By Day.
When you smile people smile with you when your sad The World …
Infamous Scots. Lord Lovat.
Lord Lovat (Scottish Gaelic: Mac Shimidh) is a title in the Peerage of Scotland. It was …
Think Positive!
When your in a positive mood the World can be alive but …
Famous Scots. Sir. Billy Connolly.
Contains some strong language. Sir William Connolly, CBE (born 24 November 1942) is a …
Growing old. Gracefully.
You remember when you were a lad things you did were brave …
Epitaph. By Samuel Taylor Coleridge.
Stop, Christian passer-by!—Stop, child of God, And read with gentle breast. Beneath …
Facebook Comments
William Sinclair Manson
Welcome friends. My name is William Sinclair Manson. I am 60 years young, I am Scottish but now living in a small village in England. I have been blogging for many Years but recently joined Wordpress and I love it. I have made many new dedicated friends here and hope to meet more around the World.

Please leave me a comment. It's always nice to hear from you. Dont be scared I don't bite lol, If there is anything on my site broken, please let me know. Ta very much.